(二)定積分
1.知識范圍
(1)定積分的概念
定積分的定義及其幾何意義 可積條件
(2)定積分的性質(zhì)
(3)定積分的計算
變上限積分 牛頓—萊布尼茨(Newton-Leibniz)公式 換元積分法 分部積分法
(4)無窮區(qū)間的廣義積分
(5)定積分的應用
平面圖形的面積 旋轉(zhuǎn)體體積 物體沿直線運動時變力所作的功
2.要求
(1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。
(2)掌握定積分的基本性質(zhì)。
(3)理解變上限積分是變上限的函數(shù),掌握對變上限定積分求導數(shù)的方法。
(4)熟練掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區(qū)間的廣義積分的概念,掌握其計算方法。
(7)掌握直角坐標系下用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。
會用定積分求沿直線運動時變力所作的功。
四、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.知識范圍
(1)向量的概念
向量的定義 向量的模 單位向量 向量在坐標軸上的投影向量的坐標表示法 向量的方向余弦
(2)向量的線性運算
向量的加法 向量的減法 向量的數(shù)乘
(3)向量的數(shù)量積
二向量的夾角 二向量垂直的充分必要條件
(4)二向量的向量積二向量平行的充分必要條件
2.要求
(1)理解向量的概念,掌握向量的坐標表示法,會求單位向量、方向余弦、向量在坐標軸上的投影。
(2)熟練掌握向量的線性運算、向量的數(shù)量積與向量積的計算方法。
(3)熟練掌握二向量平行、垂直的充分必要條件。