曲線關(guān)于已知點(diǎn)或已知直線的對(duì)稱曲線問(wèn)題
求已知曲線F(x,y)=0關(guān)于已知點(diǎn)或已知直線的對(duì)稱曲線方程時(shí),只須將曲線F(x,y)=O上任意一點(diǎn)(x,y)關(guān)于已知點(diǎn)或已知直線的對(duì)稱點(diǎn)的坐標(biāo)替換方程F(x,y)=0中相應(yīng)的作稱即得,由此我們得出以下結(jié)論。
1、曲線F(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線的方程是F(2a-x,2b-y)=0
2、曲線F(x,y)=0關(guān)于直線Ax+By+C=0對(duì)稱的曲線方程是F(x-(Ax+By+C),y-(Ax+By+C))=0
特別地,曲線F(x,y)=0關(guān)于
(1)x軸和y軸對(duì)稱的曲線方程分別是F(x,-y)和F(-x,y)=0
(2)關(guān)于直線x=a和y=a對(duì)稱的曲線方程分別是F(2a-x,y)=0和F(x,2a-y)=0
(3)關(guān)于直線y=x和y=-x對(duì)稱的曲線方程分別是F(y,x)=0和F(-y,-x)=0
除此以外還有以下兩個(gè)結(jié)論:對(duì)函數(shù)y=f(x)的圖象而言,去掉y軸左邊圖象,保留y軸右邊的圖象,并作關(guān)于y軸的對(duì)稱圖象得到y(tǒng)=f(|x|)的圖象;保留x軸上方圖象,將x軸下方圖象翻折上去得到y(tǒng)=|f(x)|的圖象。
例2(全國(guó)高考試題)設(shè)曲線C的方程是y=x3-x。將C沿x軸y軸正向分別平行移動(dòng)t,s單位長(zhǎng)度后得曲線C1:
1)寫出曲線C1的方程
2)證明曲線C與C1關(guān)于點(diǎn)A( , )對(duì)稱。
(1)解 知C1的方程為y=(x-t)3-(x-t)+s
(2)證明 在曲線C上任取一點(diǎn)B(a,b),設(shè)B1(a1,b1)是B關(guān)于A的對(duì)稱點(diǎn),由a=t-a1,b=s-b1,代入C的方程得:
s-b1=(t-a1)3-(t-a1)
`b1=(a1-t)3-(a1-t)+s
`B1(a1,b1)滿足C1的方程
`B1在曲線C1上,反之易證在曲線C1上的點(diǎn)關(guān)于點(diǎn)A的對(duì)稱點(diǎn)在曲線C上
`曲線C和C1關(guān)于a對(duì)稱
我們用前面的結(jié)論來(lái)證:點(diǎn)P(x,y)關(guān)于A的對(duì)稱點(diǎn)為P1(t-x,s-y),為了求得C關(guān)于A的對(duì)稱曲線我們將其坐標(biāo)代入C的方程,得:s-y=(t-x)3-(t-x)
`y=(x-t)3-(x-t)+s
此即為C1的方程,`C關(guān)于A的對(duì)稱曲線即為C1。