數(shù)學(xué)思想方法
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題.方程思想,是從問(wèn)題中的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過(guò)解方程(組)或不等式(組)來(lái)使問(wèn)題獲解.有時(shí),還通過(guò)函數(shù)與方程的互相轉(zhuǎn)化、接軌,達(dá)到解決問(wèn)題的目的.函數(shù)與方程是兩個(gè)不同的概念,但它們之間有著密切的聯(lián)系,方程f(x)=0的解就是函數(shù)y=f(x)的圖象與x軸的交點(diǎn)的橫坐標(biāo).
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,其理論和應(yīng)用涉及各個(gè)方面,是貫穿整個(gè)高中數(shù)學(xué)的一條主線.這里所說(shuō)的函數(shù)思想具體表現(xiàn)為:運(yùn)用函數(shù)的有關(guān)性質(zhì),解決函數(shù)的某些問(wèn)題;以運(yùn)動(dòng)和變化的觀點(diǎn)分析和研究具體問(wèn)題中的數(shù)學(xué)關(guān)系,通過(guò)函數(shù)的形式把這種關(guān)系表示出來(lái)并加以研究,從而使問(wèn)題獲得解決;對(duì)于一些從形式上看是非函數(shù)的問(wèn)題,經(jīng)過(guò)適當(dāng)?shù)臄?shù)學(xué)變換或構(gòu)造,使這一非函數(shù)的問(wèn)題轉(zhuǎn)化為函數(shù)的形式,并運(yùn)用函數(shù)的有關(guān)概念和性質(zhì)來(lái)處理這一問(wèn)題,進(jìn)而使原數(shù)學(xué)問(wèn)題得到順利地解決.尤其是一些方程和不等式方面的問(wèn)題,可通過(guò)構(gòu)造函數(shù)很好的處理.
方程思想就是分析數(shù)學(xué)問(wèn)題中的變量間的等量關(guān)系,從而建立方程或方程組,通過(guò)解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問(wèn)題,使問(wèn)題獲得解決.尤其是對(duì)于一些從形式上看是非方程的問(wèn)題,經(jīng)過(guò)一定的數(shù)學(xué)變換或構(gòu)造,使這一非方程的問(wèn)題轉(zhuǎn)化為方程的形式,并運(yùn)用方程的有關(guān)性質(zhì)來(lái)處理這一問(wèn)題,進(jìn)而使原數(shù)學(xué)問(wèn)題得到解決.