換元法
以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域。
例2求函數(shù)y=x-3+√2x+1的值域。
點撥:通過換元將原函數(shù)轉(zhuǎn)化為某個變量的二次函數(shù),利用二次函數(shù)的值,確定原函數(shù)的值域。
解:設(shè)t=√2x+1(t≥0),則
x=1/2(t2-1)。
于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函數(shù)的值域為{y|y≥-7/2}。
點評:將無理函數(shù)或二次型的函數(shù)轉(zhuǎn)化為二次函數(shù),通過求出二次函數(shù)的值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應(yīng)用十分廣泛。
練習(xí):求函數(shù)y=√x-1–x的值域。(答案:{y|y≤-3/4}