一般地,把形如y=ax²+bx+c(其中a、b、c是常數(shù),a≠0,b,c可以為0)的函數(shù)叫做二次函數(shù),其中a稱為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù),c為常數(shù)項(xiàng)。x為自變量,y為因變量。等號(hào)右邊自變量的最高次數(shù)是2。二次函數(shù)圖像是軸對(duì)稱圖形。對(duì)稱軸為直線,頂點(diǎn)坐標(biāo),交點(diǎn)式為(僅限于與x軸有交點(diǎn)和的拋物線),與x軸的交點(diǎn)坐標(biāo)是和。
注意:“變量”不同于“自變量”,不能說“二次函數(shù)是指變量的最高次數(shù)為二次的多項(xiàng)式函數(shù)”?!拔粗獢?shù)”只是一個(gè)數(shù)(具體值未知,但是只取一個(gè)值),“變量”可在實(shí)數(shù)范圍內(nèi)任意取值。在方程中適用“未知數(shù)”的概念(函數(shù)方程、微分方程中是未知函數(shù),但不論是未知數(shù)還是未知函數(shù),一般都表示一個(gè)數(shù)或函數(shù)——也會(huì)遇到特殊情況),但是函數(shù)中的字母表示的是變量,意義已經(jīng)有所不同。從函數(shù)的定義也可看出二者的差別,如同函數(shù)不等于函數(shù)的關(guān)系。
二次函數(shù)公式大全
二次函數(shù)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax²+bx+c(a,b,c為常數(shù),a≠0)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax²;+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)²;+k [拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2a
III.二次函數(shù)的圖象
在平面直角坐標(biāo)系中作出二次函數(shù)y=x??的圖象,
可以看出,二次函數(shù)的圖象是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x = -b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P [ -b/2a ,(4ac-b²;)/4a ]。
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b²-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ= b²-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ= b²-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ= b²-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax²;+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax²;+bx+c=0
此時(shí),函數(shù)圖象與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
更多信息請(qǐng)查看文秘知識(shí)